Каков возраст вселенной

Возраст Вселенной

WMAP Planck
Возраст Вселенной t0, млрд лет 13,75 ± 0,13 13,799 ± 0,021
Постоянная Хаббла H0, (км/с)/Мпк 71,0 ± 2,5 67,74 ± 0,46

Космология

Изучаемые объекты и процессы

  • Вселенная
  • Наблюдаемая Вселенная
  • Крупномасштабная структура Вселенной
    • Сверхскопления галактик
    • Галактические нити
    • Войды
    • Пузырь Хаббла
  • Реликтовое излучение
  • Скрытая масса
    • Тёмная материя
    • Тёмная энергия

История Вселенной

  • Основные этапы развития Вселенной
  • Возраст Вселенной
  • Формирование галактик

Наблюдаемые процессы

  • Расширение Вселенной
    • Космологическое красное смещение
    • Закон Хаббла
    • Ускоренное расширение Вселенной
  • Нуклеосинтез

Теоретические изыскания

  • Гравитационная неустойчивость
  • Космологический принцип
  • Космологические модели
    • Космологическая сингулярность
    • Большой взрыв
    • Модель де Ситтера
    • Модель горячей Вселенной
    • Космическая инфляция
    • Вселенная Фридмана
      • Уравнение Фридмана
      • Сопутствующее расстояние
      • Модель Лямбда-CDM
      • Космологическое уравнение состояния
      • Критическая плотность

Во́зраст Вселе́нной — время, прошедшее с начала расширения Вселенной.

По современным представлениям, согласно модели ΛCDM, возраст Вселенной составляет 13,799 ± 0,021 миллиарда лет.

Наблюдательные подтверждения в данном случае сводятся, с одной стороны, к подтверждению самой модели расширения и предсказываемых ею моментов начала различных эпох, а с другой, к определению возраста самых старых объектов (он не должен превышать получающийся из модели расширения возраст Вселенной).

Теория

Возраст Вселенной как функция космологических параметров

Современная оценка возраста Вселенной построена на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической ΛCDM-модели. Из неё, в частности, следует, что возраст Вселенной задаётся следующим образом:

t = 1 H 0 ∫ 0 1 d x x Ω Λ + Ω k x − 2 + Ω d x − 3 + Ω l x − 4 , x = a a 0 {\displaystyle t={\frac {1}{H_{0}}}\int \limits _{0}^{1}{\frac {dx}{x{\sqrt {\Omega _{\Lambda }+\Omega _{k}x^{-2}+\Omega _{d}x^{-3}+\Omega _{l}x^{-4}}}}},x={\frac {a}{a_{0}}}} исправить

где H0 — постоянная Хаббла на данный момент, a — масштабный фактор.

Основные этапы развития Вселенной

Большое значение для определения возраста Вселенной имеет периодизация основных протекавших во Вселенной процессов. В настоящее время принята следующая периодизация:

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, — это планковское время (10−43 с после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий. По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10−11 с после Большого взрыва.
  • Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10−2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
  • Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система.

Важной вехой в истории развития Вселенной в эту эпоху считается эра рекомбинации, когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс. лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.

Наблюдения

Наблюдения звёздных скоплений

Популяция белых карликов в шаровом звёздном скоплении NGC 6397. Синие квадраты — гелиевые белые карлики, фиолетовые кружки — «нормальные» белые карлики с высоким содержанием углерода.

Главное свойство шаровых скоплений для наблюдательной космологии — много звёзд одного возраста в небольшом пространстве. Это значит, что если каким-то способом измерено расстояние до одного члена скопления, то процентное различие в расстоянии до других членов скопления пренебрежимо мало.

Одновременное формирование всех звёзд скопления позволяет определить его возраст: опираясь на теорию звёздной эволюции, строятся изохроны на диаграмме «цвет — звёздная величина», то есть кривые равного возраста для звёзд различной массы. Сопоставляя их с наблюдаемым распределением звёзд в скоплении, можно определить его возраст.

Метод имеет ряд своих трудностей. Пытаясь их решить, разные команды, в разное время получали разные возрасты для самых старых скоплений, от ~8 млрд лет, до ~ 25 млрд лет.

В галактиках шаровые скопления, входящие в старую сферическую подсистему галактик, содержат множество белых карликов — остатков проэволюционировавших красных гигантов относительно небольшой массы. Белые карлики лишены собственных источников термоядерной энергии и излучают исключительно за счёт излучения запасов тепла. Белые карлики имеют приблизительно одинаковую массу звёзд-предшественниц, а значит — и приблизительно одинаковую зависимость температуры от времени. Определив по спектру белого карлика его абсолютную звёздную величину на данный момент и зная зависимость время-светимость при остывании, можно определить возраст карлика.

Однако данный подход связан как с большими техническими трудностями, — белые карлики крайне слабые объекты, — необходимо крайне чувствительные инструменты, чтоб их наблюдать. Первым и пока единственным телескопом, на котором возможно решение данной задачи является космический телескоп им. Хаббла. Возраст самого старого скопления по данным группы, работавшей с ним: 12 , 7 ± 0 , 7 {\displaystyle 12,7\pm 0,7} млрд лет, однако, результат оспаривается. Оппоненты указывают, что не были учтены дополнительные источники ошибок, их оценка 12 , 4 − 1 , 5 + 1 , 8 {\displaystyle 12,4_{-1,5}^{+1,8}} млрд лет.

Наблюдения непроэволюционировавших объектов

NGC 1705 — галактика типа BCDG

Объекты, фактически состоящие из первичного вещества, дожили до нашего времени благодаря крайне малому темпу их внутренней эволюции. Это позволяет изучать первичный химический состав элементов, а также, не сильно вдаваясь в подробности и основываясь на лабораторных законах ядерной физики, оценить возраст подобных объектов, что даст нижний предел на возраст Вселенной в целом.

К такому типу можно отнести: звёзды малой массы с низкой металличностью (так называемые G-карлики), низкометалличные области HII, а также карликовые неправильные галактики класса BCDG (Blue Compact Dwarf Galaxy).

Согласно современным представлениям, в ходе первичного нуклеосинтеза должен был образоваться литий. Особенность этого элемента заключается в том, что ядерные реакции с его участием начинаются при не очень больших (по космическим масштабам) температурах. И в ходе звёздной эволюции изначальный литий должен был быть практически полностью переработан. Остаться он мог только у массивных звёзд населения типа II. Такие звёзды имеют спокойную, не конвективную атмосферу, благодаря чему литий остаётся на поверхности, не рискуя сгореть в более горячих внутренних слоях звезды.

В ходе измерений обнаружилось, что у большинства таких звёзд обильность лития составляет:

A ( L i ) = 12 + log ⁡ ( L i / H ) = 2 , 12 {\displaystyle A(Li)=12+\log(Li/H)=2,12} .

Однако есть ряд звёзд, в том числе и сверхнизкометалличных, у которых обильность значительно ниже. С чем это связано, до конца не ясно, но есть предположение, что это вызвано процессами в атмосфере.

У звезды CS31082-001, принадлежащей звёздному населению типа II, были обнаружены линии и измерены концентрации в атмосфере тория и урана. Эти два элемента имеют различный период полураспада, поэтому со временем их соотношение меняется, и если как-то оценить первоначальное соотношение обильностей, то можно определить возраст звезды. Оценить можно двояким способом: из теории r-процессов, подтверждённой как лабораторными измерениями, так и наблюдениями Солнца; или можно пересечь кривую изменения концентраций за счёт распада и кривую изменения содержания тория и урана в атмосферах молодых звёзд за счёт химической эволюции Галактики. Оба метода дали схожие результаты: 15,5±3,2 млрд лет получены первым способом, 14 , 5 + 2 , 2 − 2 , 8 {\displaystyle 14{,}5_{+2{,}2}^{-2{,}8}} млрд лет — вторым.

Слабо металличные BCDG-галактикам (всего их существует ~10) и зоны HII — источники информации по первичному обилию гелия. Для каждого объекта из его спектра определяется металличность (Z) и концентрация He (Y). Экстраполируя определённым образом диаграмму Y-Z до Z=0, получают оценку первичного гелия.

Итоговое значения Yp разнится от одной группы наблюдателей к другой и от одного периода наблюдений к другому. Так, одна, состоящая из авторитетнейших специалистов в этой области, Изотова и Туан, получили значение Yp=0,245±0,004 по BCDG-галактикам, по HII — зонам на данный момент (2010) они остановились на значении Yp=0,2565±0,006. Другая авторитетная группа во главе с Пеймберт (Peimbert) получали также различные значения Yp, от 0,228±0,007 до 0,251±0,006.

> См. также

  • WMAP
  • Возраст Земли
  • Космический календарь
  • Теория стационарной Вселенной
  • Временная шкала далёкого будущего

Примечания

Сколько лет Вселенной?

Каков возраст нашей Вселенной? Этим вопросом озадачивалось не одно поколение астрономов и продолжат ломать голову ещё много лет, пока не будет разгадана тайна мироздания.

Как известно, уже в 1929 году космологами из Северной Америки было установлено, что Вселенная растет в своих объемах. Или говоря астрономическим языком, имеет постоянное расширение. Автором метрического расширения Вселенной является американец Эдвин Хаббл, который вывел постоянную величину, характеризующую неуклонное увеличение космического пространства.

Так сколько же Вселенной лет? Еще десять лет назад считалось, что её возраст находится в пределах 13,8 миллиардов лет. Эта оценка была получена, исходя из космологической модели, в основе которой лежит постоянная Хаббла. Однако на сегодняшний день получен более точный ответ о возрасте Вселенной, благодаря кропотливой работе сотрудников обсерватории ЕКА (Европейское Космическое Агентство) и передовому телескопу «Planck».

Сканирование космического пространства телескопом «Planck»

Телескоп был запущен в активную работу еще в мае 2009 года для определения максимально точно возможного возраста нашей Вселенной. Функционал телескопа «Planck» был нацелен на длительный сеанс сканирования космического пространства, с целью составить наиболее объективную картину излучения всех возможных звездных объектов, полученных в результате так называемого Большого взрыва.

Телескоп Planck

Длительный процесс сканирования проводился в два этапа. В 2010 году были получены предварительные результаты исследований, а уже в 2013 году подвели окончательный итог исследования космического пространства, который дал ряд весьма любопытных результатов.

Итог исследовательской работы ЕКА

Ученые ЕКА опубликовали интересные материалы, в которых, на основе собранных «оком» телескопа «Planck» данных, удалось уточнить постоянную Хаббла. Оказывается, скорость расширения Вселенной равняется 67,15 километрам в секунду на один парсек. Чтобы было понятнее, один парсек – это космическое расстояние, которое можно преодолеть за 3,2616 наших световых лет. Для большей наглядности и восприятия, можно представить две галактики, которые отталкиваются друг от друга со скоростью около 67 км/с. Цифры по космическим масштабам мизерные, но, тем не менее, это установленный факт.

Благодаря данным, собранным телескопом «Planck», удалось уточнить возраст Вселенной – это 13,798 миллиардов лет.

Изображение полученное на основе данных телескопа Planck

Данная исследовательская работа ЕКА привела к уточнению содержания во Вселенной массовой доли не только «обычной» физической материи, которая равняется 4,9 %, но и темной материи, равной теперь 26,8 %.

Попутно телескоп «Planck» выявил и подтвердил существование в далеком космическом пространстве так называемого холодного пятна, обладающего супер низкой температурой, которому пока нет внятных научных объяснений.

Другие способы оценки возраста Вселенной

Кроме космологических методов, узнать сколько Вселенной лет можно, например, по возрасту химических элементов. В этом поможет явление радиоактивного распада.

Ещё одним из способов является оценка возраста звезд. Оценив яркость старейших звезд — белых карликов, группа ученых в 1996 году получила результат: возраст Вселенной не может быть меньше 11,5 миллиардов лет. Это подтверждает данные о возрасте Вселенной, полученные на основе уточненной постоянной Хаббла.

Космология

Изучаемые объекты и процессы

  • Вселенная
    • Наблюдаемая Вселенная
    • Возраст Вселенной
  • Крупномасштабная структура Вселенной
    • Формирование структуры
  • Реликтовое излучение
  • Тёмная энергия
  • Скрытая масса

Наблюдаемые процессы

  • Космологическое красное смещение
  • Расширение Вселенной
  • Формирование галактик
  • Закон Хаббла
  • Нуклеосинтез

Теоретические изыскания

  • Космологические модели
    • Космическая инфляция
    • Большой взрыв
      • Хронология Большого взрыва
    • Вселенная Фридмана
      • Сопутствующее расстояние
    • Модель Лямбда-CDM‎
  • Космологический принцип
  • Космологическое уравнение состояния
  • Критическая плотность
  • Хронология космологии

Во́зраст Вселе́нной — время, прошедшее с момента появления Вселенной (времени, материи, звезд, планет и т. п.). Согласно современным научным данным Вселенная появилась около 13,75 ± 0,11 млрд лет назад.

Современная наука

Современная оценка возраста Вселенной построена на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической ΛCDM-модели. Так как уже в специальной теории относительности время зависит от движения наблюдателя, а в общей теории относительности — ещё и от его положения, то нужно уточнить, что понимается в таком случае под возрастом Вселенной. В современном представлении возраст Вселенной — это максимальное время, которое измерили бы часы с момента Большого взрыва до настоящего времени, попади они сейчас нам в руки. Эта оценка возраста Вселенной, как и другие космологические оценки, исходит из космологических моделей на основе определения постоянной Хаббла и других наблюдаемых параметров Метагалактики.

Некосмологическими методами возраст Вселенной можно определить по крайней мере тремя способами:

  • Возраст элементов — возраст химических элементов можно оценить, используя явление радиоактивного распада с тем, чтобы определить возраст определённой смеси изотопов.
  • Возраст скоплений — возраст самых старых шаровых скоплений звёзд можно оценить, используя кривую в координатах светимость-температура для звёзд крупных шаровых скоплений. Этим методом было показано, что возраст Вселенной больше, чем 12,07 млрд лет, с 95%-й доверительной вероятностью.
  • Возраст звёзд — возраст старейших звёзд белых карликов можно оценить, используя измерения яркости белых карликов. Более старые белые карлики будут более холодными и потому менее яркими. Обнаруживая слабые белые карлики, можно оценить продолжительность времени, в течение которого данный белый карлик охлаждался. Oswalt, Smith, Wood и Hintzen (1996, Nature, 382, 692) проделали это и получили возраст 9,5+1,1−0,8 млрд лет для звёзд основного диска Млечного пути. Они оценили возраст Вселенной по крайней мере на 2 млрд лет старше возраста диска, то есть больше 11,5 млрд лет.

Примечательно, что все эти оценки возраста Вселенной согласуются между собой. Также они все требуют ускоренного расширения Вселенной, иначе космологический возраст оказывается слишком малым.

Возраст мироздания

Алексей Левин
«Популярная механика» №5, 2012

Люди с древних времен интересовались возрастом Вселенной. И хотя у нее нельзя спросить паспорт, чтобы посмотреть дату рождения, современная наука смогла ответить на этот вопрос. Правда, лишь совсем недавно.

Мудрецы Вавилона и Греции считали мироздание вечным и неизменным, а индуистские хронисты в 150 году до н.э. определили, что ему в точности 1 972 949 091 год (кстати, по порядку величины они не сильно ошиблись!). В 1642 году английский теолог Джон Лайтфут путем скрупулезного анализа библейских текстов вычислил, что сотворение мира пришлось на 3929 год до н.э.; спустя несколько лет ирландский епископ Джеймс Ашер передвинул его на 4004 год. Основатели современной науки Иоганн Кеплер и Исаак Ньютон тоже не прошли мимо этой темы. Хотя они апеллировали не только к Библии, но и к астрономии, их результаты оказались похожими на вычисления богословов — 3993 и 3988 годы до н.э. В наше просвещенное время возраст Вселенной определяют иными способами. Чтобы увидеть их в исторической проекции, поначалу взглянем на собственную планету и ее космическое окружение.

Гадание по камням

Со второй половины XVIII века ученые начали оценивать возраст Земли и Солнца на основе физических моделей. Так, в 1787 году французский натуралист Жорж-Луи Леклерк пришел к выводу, что, если бы наша планета при рождении была шаром из расплавленного железа, ей нужно было бы от 75 до 168 тысяч лет, чтобы остыть до нынешней температуры. Через 108 лет ирландский математик и инженер Джон Перри заново просчитал тепловую историю Земли и определил ее возраст в 2–3 млрд лет. В самом начале XX столетия лорд Кельвин пришел к выводу, что если Солнце постепенно сжимается и светит исключительно за счет высвобождения гравитационной энергии, то его возраст (и, следовательно, максимальный возраст Земли и остальных планет) может составить несколько сотен миллионов лет. Но в то время геологи не смогли ни подтвердить, ни опровергнуть эти оценки из-за отсутствия надежных методов геохронологии.

В середине первого десятилетия ХХ века Эрнест Резерфорд и американский химик Бертрам Болтвуд разработали основы радиометрической датировки земных пород, которая показала, что Перри был много ближе к истине. В 1920-х были найдены образцы минералов, чей радиометрический возраст приближался к 2 млрд лет. Позднее геологи не раз повышали эту величину, и к настоящему времени она выросла более чем вдвое — до 4,4 млрд. Дополнительные данные предоставляет исследование «небесных камней» — метеоритов. Почти все радиометрические оценки их возраста укладываются в интервал 4,4–4,6 млрд лет.

Современная гелиосейсмология позволяет непосредственно определить и возраст Солнца, который, по последним данным, составляет 4,56–4,58 млрд лет. Поскольку продолжительность гравитационной конденсации протосолнечного облака исчислялась всего лишь миллионами лет, можно уверенно утверждать, что от начала этого процесса до наших дней прошло не более 4,6 млрд лет. При этом солнечное вещество содержит множество элементов тяжелее гелия, которые образовались в термоядерных топках массивных звезд прежних поколений, выгоревших и взорвавшихся сверхновыми. Это означает, что протяженность существования Вселенной сильно превышает возраст Солнечной системы. Чтобы определить меру этого превышения, нужно выйти сначала в нашу Галактику, а затем и за ее пределы.

Следуя за белыми карликами

Время жизни нашей Галактики можно определять разными способами, но мы ограничимся двумя самыми надежными. Первый метод основан на мониторинге свечения белых карликов. Эти компактные (примерно с Землю величиной) и изначально очень горячие небесные тела представляют собой конечную стадию жизни практически всех звезд за исключением самых массивных. Для превращения в белый карлик звезда должна полностью сжечь все свое термоядерное топливо и претерпеть несколько катаклизмов — например, на какое-то время стать красным гигантом.

Типичный белый карлик почти полностью состоит из ионов углерода и кислорода, погруженных в вырожденный электронный газ, и имеет тонкую атмосферу, в составе которой доминируют водород или гелий. Его поверхностная температура составляет от 8 000 до 40 000 К, в то время как центральная зона нагрета до миллионов и даже десятков миллионов градусов. Согласно теоретическим моделям, могут также рождаться карлики, состоящие преимущественно из кислорода, неона и магния (в которые при определенных условиях превращаются звезды с массой от 8 до 10,5 или даже до 12 солнечных масс), однако их существование еще не доказано. Теория также утверждает, что звезды, как минимум вдвое уступающие Солнцу по массе, заканчивают жизнь в виде гелиевых белых карликов. Такие звезды очень многочисленны, однако они сжигают водород крайне медленно и посему живут многие десятки и сотни миллионов лет. Пока что им просто не хватило времени, чтоб исчерпать водородное горючее (очень немногочисленные гелиевые карлики, обнаруженные к настоящему времени, обитают в двойных системах и возникли совсем другим путем).

Коль скоро белый карлик не может поддерживать реакции термоядерного синтеза, он светит за счет накопленной энергии и потому медленно остывает. Темпы этого охлаждения можно вычислить и на этой основе определить время, потребное для снижения температуры поверхности от первоначальной (для типичного карлика это примерно 150 000 К) до наблюдаемой. Поскольку нас интересует возраст Галактики, следует искать самые долгоживущие, а потому и самые холодные белые карлики. Современные телескопы позволяют обнаружить внутригалактические карлики с температурой поверхности менее 4000 К, светимость которых в 30 000 раз уступает солнечной. Пока они не найдены — либо их нет вообще, либо очень мало. Отсюда следует, что наша Галактика не может быть старше 15 млрд лет, иначе они бы присутствовали в заметных количествах.

Это верхняя граница возраста. А что можно сказать о нижней? Самые холодные из ныне известных белых карликов были зарегистрированы космическим телескопом «Хаббл» в 2002 и 2007 годах. Вычисления показали, что их возраст составляет 11,5–12 млрд лет. К этому еще нужно добавить возраст звезд-предшественниц (от полумиллиарда до миллиарда лет). Отсюда следует, что Млечный Путь никак не моложе 13 млрд лет. Так что окончательная оценка его возраста, полученная на основе наблюдения белых карликов, — примерно 13–15 млрд лет.

Природные часы

Согласно радиометрической датировке, самыми старыми породами на Земле сейчас считаются серые гнейсы побережья Большого Невольничьего озера на северо-западе Канады — их возраст определен в 4,03 млрд. лет. Еще раньше (4,4 млрд. лет назад) кристаллизовались мельчайшие зерна минерала циркона, природного силиката циркония, найденные в гнейсах на западе Австралии. А раз в те времена уже существовала земная кора, наша планета должна быть несколько старше. Что касается метеоритов, наиболее точную информацию дает датировка кальциево-алюминиевых вкраплений в веществе каменноугольных хондритовых метеоритов, которое практически не изменилось после его формирования из газопылевого облака, окружавшего новорожденное Солнце. Радиометрический возраст подобных структур в метеорите Ефремовка, найденном в 1962 году в Павлодарской области Казахстана, составляет 4 млрд. 567 млн лет.

Шаровые свидетельства

Второй метод основан на исследовании шарообразных звездных скоплений, находящихся в периферийной зоне Млечного Пути и обращающихся вокруг его ядра. Они содержат от сотен тысяч до более чем миллиона звезд, связанных взаимным притяжением.

Шаровые скопления имеются практически во всех крупных галактиках, причем их количество порой достигает многих тысяч. Новые звезды там практически не рождаются, зато пожилые светила присутствуют в избытке. В нашей Галактике зарегистрировано около 160 таких шаровых скоплений, и, возможно, будут открыты еще два-три десятка. Механизмы их формирования не вполне ясны, однако, вероятнее всего, многие из них возникли вскоре после рождения самой Галактики. Поэтому датировка формирования древнейших шаровых скоплений позволяет установить и нижнюю границу галактического возраста.

Такая датировка весьма сложна технически, но в основе ее лежит очень простая идея. Все звезды скопления (от сверхмассивных до самых легких) образуются из одного итого же газового облака и потому рождаются практически одновременно. С течением времени они выжигают основные запасы водорода — одни раньше, другие позже. На этой стадии звезда покидает главную последовательность и претерпевает серию превращений, которые завершаются либо полным гравитационным коллапсом (за которым следует формирование нейтронной звезды или черной дыры), либо возникновением белого карлика. Поэтому изучение состава шарового скопления позволяет достаточно точно определить его возраст. Для надежной статистики число изученных скоплений должно составить не менее нескольких десятков.

Такую работу три года назад выполнила команда астрономов, пользовавшихся камерой ACS (Advanvced Camera for Survey) космического телескопа «Хаббл». Мониторинг 41 шарового скопления нашей Галактики показал, что их средний возраст составляет 12,8 млрд лет. Рекордсменами оказались скопления NGC 6937 и NGC 6752, удаленные от Солнца на 7200 и 13 000 световых лет. Они почти наверняка не моложе 13 млрд лет, причем наиболее вероятное время жизни второго скопления — 13,4 млрд лет (правда, с погрешностью плюс-минус миллиард).

Однако же наша Галактика должна быть постарше своих скоплений. Ее первые сверхмассивные звезды взрывались сверхновыми и выбрасывали в космос ядра многих элементов, в частности, ядра стабильного изотопа бериллия — бериллия-9. Когда начали формироваться шаровые скопления, их новорожденные звезды уже содержали бериллий, причем тем больше, чем позже они возникли. По содержанию бериллия в их атмосферах можно выяснить, насколько скопления моложе Галактики. Как свидетельствуют данные по скоплению NGC 6937, эта разница составляет 200–300 млн лет. Так что без большой натяжки можно сказать, что возраст Млечного Пути превышает 13 млрд лет и, возможно, достигает 13,3–13,4 млрд. Это практически такая же оценка, как и сделанная на основании наблюдения белых карликов, но получена она совершенно иным способом.

Закон Хаббла

Научная постановка вопроса о возрасте Вселенной стала возможной лишь в начале второй четверти прошлого века. В конце 1920-х годов Эдвин Хаббл и его ассистент Милтон Хьюмасон занялись уточнением расстояний до десятков туманностей за пределами Млечного Пути, которые лишь несколькими годами ранее стали считать самостоятельными галактиками.

Эти галактики удаляются от Солнца с радиальными скоростями, которые были измерены по величине красного смещения их спектров. Хотя дистанции до большинства таких галактик удалось определить с большой погрешностью, Хаббл все же выяснил, что они примерно пропорциональны радиальным скоростям, о чем и написал в статье, опубликованной в начале 1929 года. Два года спустя Хаббл и Хьюмасон подтвердили этот вывод на основании результатов наблюдений других галактик — некоторые из них отдалены более чем на 100 млн световых лет.

Апроксимация в прошлое
В зависимости от соотношения между различными факторами график размера Вселенной имеет разную форму и в будущем, и в прошлом, что влияет на оценку ее возраста. Текущие наблюдения показывают, что Вселенная расширяется экспоненциально (красный график). Изображение: «Популярная механика»

Эти данные легли в основу прославленной формулы v = H0d, известной как закон Хаббла. Здесь v — радиальная скорость галактики по отношению к Земле, d — расстояние, H0 — коэффициент пропорциональности, чья размерность, как легко видеть, обратна размерности времени (раньше его называли постоянной Хаббла, что неверно, поскольку в предшествующие эпохи величина H0 была иной, чем в наше время). Сам Хаббл и еще многие астрономы долгое время отказывались от предположений о физическом смысле этого параметра. Однако Жорж Леметр еще в 1927 году показал, что общая теория относительности позволяет интерпретировать разлет галактик как свидетельство расширения Вселенной. Четырьмя годами позже он имел смелость довести этот вывод до логического конца, выдвинув гипотезу, что Вселенная возникла из практически точечного зародыша, который он, за неимением лучшего термина, назвал атомом. Этот первородный атом мог пребывать в статичном состоянии любое время вплоть до бесконечности, однако его «взрыв» породил расширяющееся пространство, заполненное материей и излучением, которое за конечное время дало начало нынешней Вселенной. Уже в своей первой статье Леметр вывел полный аналог хаббловской формулы и, располагая известными к тому времени данными о скоростях и дистанциях ряда галактик, получил примерно такое же значение коэффициента пропорциональности между дистанциями и скоростями, что и Хаббл. Однако его статья была напечатана на французском языке в малоизвестном бельгийском журнале и поначалу осталась незамеченной. Большинству астрономов она стала известна лишь в 1931 году после публикации ее английского перевода.

Хаббловское время

Из этой работы Леметра и более поздних трудов как самого Хаббла, так и других космологов прямо следовало, что возраст Вселенной (естественно, отсчитанный от начального момента ее расширения) зависит от величины 1/H0, которую теперь называют хаббловским временем. Характер этой зависимости определяется конкретной моделью мироздания. Если считать, что мы живем в плоской Вселенной, заполненной гравитирующим веществом и излучением, то для вычисления ее возраста 1/H0 надо умножить на 2/3.

Тут-то и возникла загвоздка. Из измерений Хаббла и Хьюмасона вытекало, что численная величина 1/H0 приблизительно равна 1,8 млрд лет. Отсюда следовало, что Вселенная родилась 1,2 млрд лет назад, что явно противоречило даже сильно заниженным в то время оценкам возраста Земли. Из этого затруднения можно было выпутаться, предположив, что галактики разлетаются медленнее, чем считал Хаббл. Со временем это допущение подтвердилось, но проблемы так и не решило. Согласно данным, полученным к концу прошлого века с помощью оптической астрономии, 1/H0 составляет от 13 до 15 млрд лет. Так что расхождение все же оставалось, поскольку пространство Вселенной как считалось, так и считается плоским, а две трети хаббловского времени сильно меньше даже самых скромных оценок возраста Галактики.

Пустой мир

Согласно последним измерениям, нижняя граница хаббловского времени составляет 13,5 млрд. лет, а верхняя — 14 млрд. Получается, что нынешний возраст Вселенной примерно равен нынешнему хаббловскому времени. Такое равенство должно строго соблюдаться для абсолютно пустой Вселенной, где нет ни гравитирующей материи, ни антигравитирующих полей. Но ведь в нашем мире хватает и того, и другого. Дело в том, что пространство сначала расширялось с замедлением, потом скорость его расширения стала расти, и в нынешнюю эпоху эти противоположные тенденции почти скомпенсировали друг друга.

В общем виде это противоречие было устранено в 1998–1999 годах, когда две команды астрономов доказали, что последние 5–6 млрд лет космическое пространство расширяется не с падающей, а возрастающей скоростью. Это ускорение обычно объясняют тем, что в нашей Вселенной растет влияние антигравитационного фактора, так называемой темной энергии, плотность которой не изменяется со временем. Поскольку плотность гравитирующей материи падает по мере расширения Космоса, темная энергия все успешней конкурирует с тяготением. Продолжительность существования Вселенной с антигравитационной компонентой вовсе не обязана быть равной двум третям хаббловского времени. Поэтому открытие ускоряющегося расширения Вселенной (отмеченное в 2011 году Нобелевской премией) позволило устранить расстыковку между космологическими и астрономическими оценками времени ее жизни. Оно также стало прелюдией к разработке нового метода датировки ее рождения.

Космические ритмы

30 июня 2001 года NASA отправило в космос зонд Explorer 80, через два года переименованный в WMAP, Wilkinson Microwave Anisotropy Probe. Его аппаратура позволила регистрировать температурные флуктуации микроволнового реликтового излучения с угловым разрешением менее трех десятых градуса. Тогда уже было известно, что спектр этого излучения почти полностью совпадает со спектром идеального черного тела, нагретого до 2,725 К, а колебания его температуры при «крупнозернистых» измерениях с угловым разрешением в 10 градусов не превышают 0,000036 К. Однако на «мелкозернистой» шкале зонда WMAP амплитуды таких флуктуаций были в шесть раз больше (около 0,0002 К). Реликтовое излучение оказалось пятнистым, тесно испещренным чуть более и чуть менее нагретыми участками.

Флуктуации реликтового излучения порождены колебаниями плотности электронно-фотонного газа, который некогда заполнял космическое пространство. Она упала почти до нуля приблизительно через 380 000 лет после Большого взрыва, когда практически все свободные электроны соединились с ядрами водорода, гелия и лития и тем самым положили начало нейтральным атомам. Пока этого не произошло, в электронно-фотонном газе распространялись звуковые волны, на которые влияли гравитационные поля частиц темной материи. Эти волны, или, как говорят астрофизики, акустические осцилляции, наложили отпечаток на спектр реликтового излучения. Этот спектр можно расшифровать при помощи теоретического аппарата космологии и магнитной гидродинамики, что дает возможность по-новому оценить возраст Вселенной. Как показывают новейшие вычисления, его наиболее вероятная протяженность составляет 13,72 млрд лет. Она и считается сейчас стандартной оценкой времени жизни Вселенной. Если принять во внимание все возможные неточности, допуски и приближения, можно заключить, что, согласно результатам зонда WMAP, Вселенная существует от 13,5 до 14 млрд лет.

Таким образом, астрономы, оценивая возраст Вселенной тремя различными способами, получили вполне совместимые результаты. Поэтому теперь мы знаем (или, выражаясь осторожней, думаем, что знаем), когда возникло наше мироздание — во всяком случае, с точностью до нескольких сотен миллионов лет. Вероятно, потомки внесут решение этой вековой загадки в перечень самых замечательных достижений астрономии и астрофизики.

Возраст вселенной

Возраст вселенной

Космология

  • Возраст Вселенной
  • Большой взрыв
  • Содвижущееся расстояние
  • Реликтовое излучение
  • Космологическое уравнение состояния
  • Тёмная энергия
  • Скрытая масса
  • Вселенная Фридмана
  • Космологический принцип
  • Космологические модели
  • Формирование галактик
  • Закон Хаббла
  • Космическая инфляция
  • Крупномасштабная структура космоса
  • Критическая плотность
  • Модель Лямбда-CDM‎
  • Расширение Вселенной
  • Нуклеосинтез
  • Наблюдаемая Вселенная
  • Космологическое красное смещение
  • Форма Вселенной
  • Формирование структуры
  • Хронология Большого взрыва
    • Графическая хронология
  • Хронология космологии
  • Безусловная судьба Вселенной
  • Вселенная

Родственные темы

  • Астрофизика
  • ОТО
  • Физика элементарных частиц
  • Квантовая гравитация
  • Эволюция
  • Синергетика

Шаблон: Просмотр • Обсуждение • Править

Во́зраст Вселе́нной — время, прошедшее с момента, когда появилась Вселенная (время, материя, звёзды, планеты и т. п.). Существует ряд различных научных, религиозных и мифологических оценок возраста Вселенной и хронологий.

Считается, что наша Вселенная появилась около 13,73±0,12 млрд лет назад. Это современная оценка, принятая на основе одной из распространённых моделей (см. обсуждение) Вселенной.

Возраст Вселенной можно определить по крайней мере тремя способами:

  • Возраст элементов — возраст химических элементов можно оценить, используя явление радиоактивного распада с тем, чтобы определить возраст определённой смеси изотопов.
  • Возраст скоплений — возраст самых старых шаровых скоплений звёзд можно оценить, используя кривую в координатах светимость-температура для звёзд крупных шаровых скоплений. Этим методом было показано, что возраст Вселенной больше, чем 12.07 миллиардов лет с 95%-ной доверительной вероятностью.
  • Возраст звёзд — возраст старейших звёзд белых карликов можно оценить, используя измерения яркости белых карликов. Более старые белые карлики будут более холодными и потому менее яркими. Обнаруживая слабые белые карлики, можно оценить продолжительность времени, в течение которого данный белый карлик охлаждался. Oswalt, Smith, Wood и Hintzen (1996, Nature, 382, 692) проделали это и получили возраст миллиардов лет для звёзд основного диска Млечного пути. Они оценили возраст Вселенной по крайней мере на 2 миллиарда лет старше возраста диска, т.е. больше 11.5 миллиардов лет.

Кроме того, существуют способы оценки Возраста Вселенной, исходя из космологических моделей на основе определения Постоянной Хаббла.

Индуистская хронология

В индуизме день Брахмы, состоящий из 1000 периодов по 4 юги (4,320 млрд лет). По прошествии этого периода наступает ночь Брахмы, равная по продолжительности Кальпе. Считается, что нынешний Брахма находится на 51 году своей жизни, что соответствует 155,52 трлн. лет.

Библейские источники

Сотворение света, из иллюстраций Гюстава Доре к Библии. Быт. 1:1 («Да будет свет»).

В первые века христианства предпринимались попытки соотнести современность и события, описанные в Библии. Проповедник де-Виньоль, живший в XVIII веке, после 40 лет изучения библейских хронологий, в результате проведённых подсчётов насчитал около 200 различных вариантов эры «от сотворения мира», или «от Адама». Согласно таковым, период времени от сотворения мира до Рождества Христова насчитывал от 3483 до 6984 лет.

Наибольшее распространение приобрели три так называемые мировые эры:

  • Александрийская эра Анниана — (исходная точка — 5501 (фактически 25 мая 5493) год до н. э., а также 5472 год до н. э. или 5624 год до н. э.), бывшая основной хронологией в Византийской империи до IX века.
  • Антиохийская эра — (1 сентября 5969 год до н. э.) по Феофилу, создана в 180 н. э.
  • Византийская эра (константинопольская) — (21 марта 5508, а впоследствии 1 сентября 5509 г. до н. э.)., которая начиная с VII века постепенно стала текущей хронологической системой в Византийской империи и во всём православном мире. Согласно Септуагинте (греческий перевод Ветхого Завета) были определены также и даты других библейских событий. Однако католический Рим этих расчётов не признал. Эта эра была также введена в Сербии, Болгарии, а также и в России, где система использовалась с XI века до её упразднения в 1700 г. Петром I.
  • Ватиканская эра существенно короче византийской. Дело в том, что в Вульгате (латинский перевод Ветхого Завета) продолжительности жизни древних патриархов, правления царей и т. п. указаны меньшие, чем в греческом переводе.
  • Иудейская эра начинается 6/7 октября 3761 г. до н. э. Это летосчисление является частью еврейского календаря и в настоящее время официально используется в Государстве Израиль наряду с григорианским календарём.

Другие датировки начала мира

  • 3491 до н. э. — датировка по Иерониму;
  • 4004 до н. э. (23 октября) — по Джеймсу Ашшеру;
  • 4700 до н. э. — самарийская;
  • 5199 до н. э. — датировка по Евсевию Кесарийскому;
  • 5500 до н. э. — по Ипполиту и Сексту Юлию Африканскому;
  • 5515 до н. э., а также 5507 до н. э. — по Феофилу;
  • 5551 до н. э. — по Августину;
  • 5872 до н. э. — так называемая датировка 70 толковников.

См. также

  • Вселенная
  • Сотворение мира
  • Конец света

Спросите Итана №99: откуда нам известен возраст Вселенной?

Юность – подарок природы, а старость – произведение искусства.
— Станислав Ежи Лец
Каждую неделю в нашем блоге освещаются чудеса Вселенной. У вас есть возможность отправлять вопросы и предложения в еженедельную колонку «Спросите Итана», и периодически я выбираю один из вопросов, чтобы ответить на него. Сегодняшний вопрос не только получит ответ от Итана – он и задан будет Итаном, только по фамилии Барбур, который спрашивает:
У меня вопрос по астрономии, по сути такой: сколько существует независимых способов измерения возраста вселенной?
Я бы с удовольствием сообщил вам, что таких способов великое множество, и все они указывают на возраст в 13,8 миллиарда лет, точно так же, как существует множество доказательств существования тёмной материи. Но на самом теле их только два, причём один сильно лучше другого.

«Хороший» способ предлагает подумать о том, что в наше время Вселенная расширяется и охлаждается, и понять, что из этого следует, что в прошлом она была горячее и плотнее. Если мы отправимся в прошлое, во всё более ранние времена, то мы обнаружим, что при меньшем объёме Вселенной частицы материи в ней были не только ближе друг к другу, но и длины волн фотонов были короче, поскольку расширение Вселенной растягивало их до такого состояния, в каком мы их видим сегодня.

Поскольку длина волны фотона определяет его энергию и температуру, фотон с меньшей длиной волны более энергичный и горячий. Перемещаясь назад во времени, мы видим повышение температуры, и в какой-то момент достигаем ранних фаз Большого взрыва.
Это важно: существует «самая ранняя» стадия Большого взрыва!

Если мы будем экстраполировать назад бесконечно, мы дойдём до сингулярности, где физика перестаёт работать. Наше современное понимание ранних фаз Вселенной даёт нам понять, что Большому взрыву предшествовала фаза инфляции, и длительность этого состояния не определена.
Говоря о возрасте Вселенной, мы говорим о времени, прошедшем с тех пор, как Вселенную впервые стало возможно описывать через горячий Большой взрыв, и до сегодняшнего дня.

По законам Общей теории относительности, в нашей Вселенной, в которой:
• плотность на крупнейших масштабах равномерна,
• везде действуют одинаковые законы и общие свойства,
• вне зависимости от выбранного направления везде всё одинаково,
• Большой взрыв случился везде одновременно,
существует уникальная связь между её возрастом и расширением всё время её существования.

Иначе говоря, сумев измерить, как расширяется Вселенная сейчас, и как она расширялась в течение своей жизни, мы узнаем, из чего она состоит. Мы можем узнать это через множество наблюдений, включающих:
• Прямые измерения яркости и расстояния до объектов Вселенной, таких, как звёзды, галактики, сверхновые, что позволяет нам построить лестницу космических расстояний.
• Измерение крупномасштабных структур, скоплений галактик, и барионных акустических осцилляций.
• Измерение флюктуаций реликтового излучения, «фотографию» Вселенной, сделанную в возрасте 380 000 лет.
Если сложить всё это вместе, то мы получим Вселенную, состоящую сегодня на 68% из тёмной энергии, на 27% из тёмной материи, на 4,9% из нормальной материи, на 0,1% из нейтрино, на 0,01% из излучения, и, в общем-то, всё.
Рассмотрев сегодняшнее расширение Вселенной, мы сможем провести экстраполяцию назад во времени, узнать историю её расширения, а, следовательно, и возраст.
Полученное число – точнее всего с телескопа Планк, но дополненное и другими источниками, например, измерением сверхновых, ключевого проекта телескопа им. Хаббла по измерению межгалактических расстояний и Слоановским цифровым небесным обзором – мы получим, что возраст Вселенной сегодня 13,81 миллиарда лет с погрешностью всего в 120 миллионов лет. Это значит, что мы уверены в возрасте на 99,1%, что весьма удивительно!
Да, у нас есть разные наборы данных, приводящие к этому заключению, но на самом деле, метод один и тот же. Нам просто повезло, что существует согласованная картинка, на которую они все указывают, но на самом деле, ни одного из этих ограничений самого по себе недостаточно, чтобы сказать «вот такая вот у нас Вселенная». Все они предлагают набор вариантов, и лишь их пересечение говорит нам о том, где мы живём.
Если бы у Вселенной были те же свойства, что и сегодня, но она на 100% состояла бы из нормальной материи, безо всякой тёмной материи и тёмной энергии, то её возраст должен был бы составлять всего 10 миллиардов лет. Если бы во Вселенной было 5% нормальной материи (безо всякой тёмной материи и тёмной энергии), а постоянная Хаббла равнялась бы 50 (км/с)/Мпк, а не 70 (км/с)/Мпк, то Вселенной было бы 16 миллиардов лет. Но комбинация всех точно свойств говорит нам о возрасте в 13,81 миллиарда лет, с малой погрешностью. И это удивительное достижение науки.
Но это один метод. Он главный, лучший, наиболее полный, и на него указывают горы доказательств. Есть и ещё один, и для проверки результатов он очень полезен.
Это то, что мы знаем особенности жизни звёзд, сжигания их топлива и их смерти. Точнее, мы знаем, что у всех звёзд, когда они живы и сжигают основное топливо (проводя синтез гелия из водорода), есть конкретная яркость и цвет, и они удерживают эту яркость и цвет определённое время: пока в их ядрах не начнёт заканчиваться топливо.
В этот момент самые яркие, голубые и массивные звёзды начинают «выключаться» из главной последовательности (изогнутая линия на диаграмме цвет-размер внизу), и превращаться в гигантов и сверхгигантов.
Если найти эту точку выключения у скопления звёзд, сформировавшихся в одно и то же время, мы можем узнать – зная, как работают звёзды – возраст звёзд в скоплении. Посмотрев на самые старые шаровидные скопления, в которых меньше всего тяжёлых элементов, и выключения которых случаются с наименее массивными звёздами, мы обнаружим, что их возраст последовательно оказывается равным примерно 13,2 миллиарда лет, и не более того. (Но тут существует серьёзная погрешность в миллиард лет).
Звёзды возрастом в 12 миллиардов лет и менее встречаются очень часто, но звёзд возрастом в 14 миллиардов лет или более никто не видел, хотя в 1990-х частенько упоминали возраста в 14-16 миллиардов лет (улучшенное понимание звёзд и их эволюции уменьшило эти оценки).
Так что, у нас есть два метода – один из космической истории и один из измерения ближних звёзд – показывающих, что возраст нашей Вселенной находится между 13 и 14 миллиардами лет. Никто бы не удивился, если бы нам было 13,6 или 14,0 миллиардов лет, но нам с очень большой точностью не 13,0 или 15,0 миллиардов лет. Можно с уверенностью называть возраст в 13,8 миллиарда лет – и теперь вы знаете, почему!